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Abstract

For a well-adapted behavior, an individual
has to establish and refine its own body model
continuously during life time. The best way
to collect the necessary data for bootstrap-
ping this model is active movement. At this,
it is useful if actions are chosen in such a
way that the gathered information matches
well with the current stage of the learning
system. In this paper, we investigate the
method of self-exploration by intrinsic moti-
vation, whereby the individual is driven to
select appropriate actions to support its own
learning progress. We implemented an unsu-
pervised neural multi-expert architecture and
tested the learning algorithm on an abstract
artificial individual.

1. Introduction
The creation of artificial individuals may help us to
understand the basic structure of autonomous learn-
ing. Therefore, it is useful to give an individual the
possibility to establish its own body model. In order
to continuously adapt the body model, suitable sen-
sory input has to be provided at appropriate time.
The selection of adequate motor actions has to be
adjusted to the internal state of the learning system.
This is necessary in order to avoid too simple or too
complex sensory data, which in either case is subop-
timal for the individual’s learning progress.
(Schmidhuber, 2006, Oudeyer et al., 2007) sug-

gests that the decreasing error of prediction of the
internal state possibly functions as intrinsic motiva-
tion, and that this will help to build the body model
in a more adaptive way. We supplemented the frame-
work with different components, and for now, tested
our implementation on simple abstract individuals.
We can obtain similar results which raise hope, that
the intrinsic motivation hypothesis is a fruitful ap-
proach.

The purpose of this work is to take a step forward
in the understanding of basic learning algorithms,
which are mainly shaped by the individual’s proper-
ties. We try to reduce the problem as much as possi-
ble. Therefore, as a first step, the individual will have
a restricted morphology and will be released from ba-
sic survival motivations, providing unlimited energy
supply and preventing self-harm. The applied online
learning algorithm operates in an overall unsuper-
vised manner. It is capable of life-long learning and
will bootstrap all information from scratch. Emerg-
ing structure and decreased complexity in behavior
can be observed in comparison to plain random ac-
tivities. This structure is only generated from inside,
exclusively formed by the shape of the body and the
architecture of the learning mechanism. There are no
explicit objectives except intrinsic motivation. This
is given in the form of reward, which is simply a func-
tion of the individual’s learning progress. To put it
crudely, the individual is only wanted to have fun
during learning.

The outline of this paper is as follows: Firstly, we
clarify the sensory basis for self-exploration experi-
ments and explain in detail the neural multi-expert
system, which mainly serves for state identification.
Refining some computational aspects, in section 3 we
pick up a definition of learning progress and intrinsic
motivation. Section 4 shows a straight forward mech-
anism for action selection. Section 5 describes the ex-
perimental test case and the following one presents
the derived results.

2. Competing Experts
Body and behavior of biological individuals are
commonly well-adapted to environmental conditions.
Until now, differentiating between body and environ-
ment is not mandatory when thinking of basic learn-
ing algorithms. Hereinafter, we will make no distinc-
tion between body and environment. Beyond that,
all sensory data will be taken into account, as ap-
propriate with preprocessing. Conventionally, these



inputs may be raw sensory data or higher level per-
cepts.

In order to decide which sensorimotor context the
individual is situated in, we have to process the ongo-
ing sensory data and generalize distinct states. This
will also be useful to decide what action should be
chosen next. One way to determine a certain state
is to make a prediction of next sensory data, and
compare the predicted values to the true ones. If the
prediction error has been low then the predicting unit
matches with the current sensorimotor state. Imag-
ine a bunch of such prediction units, each qualified
for another state. Such a single predictor is called an
expert, if it has specialized to a certain sensorimotor
context, and is able to predict the next sensory state
with sufficient precision.

For a robust state distinction, all available sensors
can and should be used as a rich sensory input

x(t) = (x1(t), x2(t), . . . , xD(t))T (1)

with x(t) ∈ S ⊆ RD at discrete time t and D ∈ N
denoting the number of different sensors. The learn-
ing system should be allowed to sort out unnecessary
information by itself. Classically, the prediction is ei-
ther an estimate of the next sensory value composed
from preceding ones or the particular part of the sen-
sory state space is reconstructed from the knowledge
of current and past motor activities. Therefore, the
past motor commands have to be provided as ad-
ditional sensory input, too. Usually, an expert will
make use of both. In consequence, multiple experts
will evolve in similar parts of the sensory state space,
but have different expertise for particular motor ac-
tivities.
In order to make good predictions, we have to find

an adequate representation of time, so that we can
use some kind of memory for a better distinction of
different dynamic states. The easiest way to do so is
explicit time embedding. Therefore, we handle time
as additional spatial dimensions, by implementing a
tapped delay line for every single sensory channel xi.
We expand the sensory state space by time, so that
the experts could make use of the current sensory
data, as well as their short term history. The time
expanded sensory state space is given by

x̃(t) = (x(t),x(t− 1), . . . ,x(t−K + 1), 1)T (2)

as a single column vector x̃(t) ∈ RDK+1 of all avail-
able sensory data, including its K ∈ N time delayed
previous values and the bias.
In its simplest form, the architecture used for pre-

diction consists of one feed forward neuron for each
prediction value. Therefore, the prediction is noth-
ing but a non-linear weighted sum of all available
input data. In this context it is helpful to think of
a special type of synapse. Referring to filter design
techniques, this will be labeled as a FIR-type synapse

Figure 1: Structure of a simple prediction unit (expert)
using FIR-type synapses and hyperbolic tangent as neural
transfer function.

(Back and Tsoi, 1991), because the weighted sum of
time delayed values is a finite impulse response filter.
Remember the common filter structure

yi(t) =
K−1∑
k=0

wikxi(t− k) (3)

where yi(t) is the filter’s output and wik ∈ R the
coefficients (weights) of the linear filter. In our ap-
plication, a delay line length of K = 5 is sufficient.
This type of synapse sheds new light on how the ex-
pert actually uses every single input channel. From a
filter design point of view, we are able to distinguish
low-pass, band-pass or high-pass types of synapses.
Concluding, the architecture of a single expert unit
is given by

x̂(t+ 1) = tanh (Wx̃(t)) (4)
E(t+ 1) = ‖x(t+ 1)− x̂(t+ 1)‖2 (5)

with the weight matrix W ∈ RD×(KD+1) (see fig. 1).
Every expert unit makes a prediction x̂(t+ 1) which
is compared with the next sensory value x(t + 1)
and the unit n with minimal prediction error En(t)
is assigned to be the winner. This process can be
thought of as a state discretization. Hard competi-
tive learning (winner-takes-all) discretizes the sen-
sorimotor input space in N ∈ N distinct states,
each detected and represented by a single expert
unit. This is equivalent to the concept of regions
as stated in (Oudeyer et al., 2007). Only the win-
ning unit is allowed to adapt its weights. Due to
the feed forward nature of the prediction network,
this can be done easily with the online variant of
the well-known backpropagation of error algorithm
(Rumelhart et al., 1986, Schiffmann et al., 1993).

Growing Multi-Experts Bounded rationality
plays an important role for the design of a competing
expert architecture. For almost all robotic applica-
tions computing resources are limited to a certain
extent. For the sake of life-long adaption, further
expert units have to be included when the robot ex-
periences new sensorimotor situations. Therefore, it
is necessary to detect redundant or futile units and
remove them to clear the way for new experts. Those
will be inserted right in time when such situations
appear.



To handle the insertion and deletion of expert
units, we use a modified version of growing neural
gas with utility criterion (Fritzke, 1997). In general,
a neural gas follows the shape of the sensory input
data by placing units on locations of high density.
Those will be interconnected with edges in the man-
ner of setting up a topology to make an approxi-
mation of the input space. In a certain time in-
terval, new units will be inserted where the high-
est approximation error occurs. To be able to follow
non-stationary distributions, there is a utility crite-
rion for the purpose of detecting futile or ineffective
units. If the input distribution changes gradually ex-
isting units adapt their weights, while rapid changes
cause instantaneous deletion of edges and units.
For the application in our multi-expert architec-

ture, some modifications have to be done to the
GNG-U. Firstly, we replace the classical distance
based activation unit by the neural expert unit. The
prediction error of the expert is equivalent to the
previous distance error. Hence, the best predicting
expert n is assigned as the winning unit. Major mod-
ifications affect the time dependence of the insertion
process. To be as reactive as possible, new units
will only be inserted when the current winning ex-
pert is fully trained. We re-import the idea of an
annealing learning rate, but implement one for ev-
ery single expert unit. In doing so, we can implic-
itly detect novelty by testing, if the winning expert’s
learning rate has been fallen below a certain thresh-
old εθ. That implies that a previously trained ex-
pert should be supported by another unit to keep
the expert’s specialization. The new unit will be in-
serted next to the current sensorimotor context by
inheriting the weights of a fast adapting scout unit
(Martius et al., 2008). Note that the learning rate
will be annealed only by the amount of the weight
change. In consequence, if the winning unit is al-
ready perfectly adapted nothing will be changed in
terms of the network’s topology. The update rule for
the dynamic part of the learning rate is

εn(t) = εn(t− 1) · e−κ ‖∆Wn‖ (6)

with ∆Wn denoting the change of the weight ma-
trix of unit n, weighted by κ ∈ R, κ > 0. New
experts were initialized with ε0. Finally, the learn-
ing rate used for the adaption process is set to
ηn(t) = εn(t)+εR for the reason that slight adaption
is always possible.

3. Learning Progress Definition

Since we released a primitive artificial individ-
ual from basic survival motivations, all that is
left may be of an intrinsic nature. Intrin-
sic motivation has been discussed in detail in
(Oudeyer and Kaplan, 2008). The notion is that

Figure 2: A low-pass differentiator.

learning progress itself functions as intrinsic moti-
vation. Imagine an individual which receives reward
when it has learned something. In order to obtain
more reward, it has to repeat actions that lead to
successful learning. Moreover, it is clear that such
activities should only be executed when the individ-
ual observes the same sensorimotor context. Such a
context will now be detected by an expert unit as
presented in the previous section.

The individual’s learning progress, i. e. the reward
can be derived from the prediction error of the learn-
ing experts. There is strong evidence that the predic-
tion error constitutes a learning signal in biological
individuals (Doya, 2002). In our approach, only the
winning expert adapts its weights. Therefore, reward
can be directly defined as

r(t) = −dEn(t)
dt

(7)

with En(t) being the prediction error of the winning
expert.

A Low-pass Differentiator In order to use real
world sensory data, one has to pay attention to
the computation of the prediction error’s deriva-
tive. Noise comes into the system through sen-
sors and the prediction error is a function of sen-
sory input. Hence, a discrete differentiation like
y(t) = (x(t)− x(t− 1)) ∆t−1 will in most cases lead
to unintended amplification of noise. For a precise
and noise resistant differentiation, we implemented a
simple but effective 21-tap FIR low-pass differentia-
tion filter, following the method of (Hamming, 1989).
An ideal differentiator with low-pass filter properties
would have a transfer function like

Hideal(eiω) =

{
iω |ω| ≤ ωc
0 ωc < |ω| < π

(8)

with adjustable cutoff frequency fc = ωc/2π (here,
i denotes the imaginary unit). Fourier series expan-
sion of (8) leads to

ck = − 1
π

(
sin(kωc)
k2 − ωc cos(kωc)

k

)
(9)

with k ∈ Z, k = −L . . . L. The truncated filter coeffi-
cients are weighted by the hamming window function

wk = 0.54 + 0.46 cos(πk/L) (10)



and are manually adjusted by b = 2.091 to reduce
the Gibbs phenomenon. The resulting filter is given
by its coefficients

qk = bwkck (11)

for L = 10, leading to the transfer function depicted
in fig. 2. Note, the filter has a constant but not
negligible group delay of L time steps. Therefore
the reward signal is delayed. This has to be taken
into account when using the reward for updating the
corresponding probabilities of actions.

4. Action Selection
We use the standard approach of Q-learning in
its most elementary form for online and on-policy
learning, SARSA(λ) (Sutton and Barto, 1998,
Rummery and Niranjan, 1994). The method leads
to an action-value-matrix Q ∈ RN×M which con-
tains valuations for every state-action pair. The
discrete set of N states is provided by the multi-
expert architecture. The discrete set of M ∈ N
actions is usually a sampled subset of the available
motor space and will be converted into the real
valued and time discrete motor vector m(t). For
example, this can be easily implemented as a neural
field of M interconnected neurons as stated in
(Toussaint, 2006).
The winning expert n is allowed to choose the

next action. A robust and popular mechanism for
action selection is the ε-greedy method. Basically,
the action with the maximum Q-value is chosen.
However, with a small probability of ε we choose a
random action. This consequently ignores the next
best action while selecting a completely random one.
A more sophisticated method is Boltzmann selec-
tion (Doya, 2002) where Q-values are converted into
probabilities through the application of the softmax-
function

Pnk = eβnQnk∑M−1
l=0 eβnQnl

(12)

for all k = 1 . . .M . Now we choose the actions
based on their probabilities. The inverse tempera-
ture βn ∈ (0,∞) regulates the ratio of randomness
and greediness in action selection. Note that the
exponential function can easily break the bounds of
common computer numbering formats. As a prop-
erty of the softmax activation function, one can sim-
ply normalize the tempered Q-values qk = βnQnk
by

q̃k = qk −max(q) (13)
where q̃ are the new and secure Q-values. This sim-
ple transformation leads to exactly the same proba-
bilities but does not accidentally produce an arith-
metic overflow.

The Boltzmann selection method is quite ineffec-
tive with a constant value of βn. Once maladjusted,

this will inhibit the system in one way or another. A
collateral learning rule like

βn(t) = βn(t− 1) ·
(

3
2
− vM

)
(14)

adjusts βn in the way, that the variance of the se-
lection probabilities v = Var (Pn) ∈

[
0, 1

M

]
quickly

approaches the constant value 1
2M .

5. Experimental Test Case
Most of the robot platforms—simulated or real—are
much too complex. In order to study basic learning
algorithms, it is of interest to have a simple, com-
pletely foreseeable system, which is well-defined and
easy to visualize.

Neuron in a Box To begin with, one or two de-
grees of freedom are sufficient. Therefore, our test
system is a two dimensional non-linear iterated map
in the form of a fully connected neural network given
by

x(t+ 1) = tanh
(
W̃x(t) + b + am(t)

)
(15)

W̃ =
(

1.01 0.1
0.1 1.01

)
b =

(
0.0398

0

)
a = 0.1 (16)

where W̃ and b defines the behavior of the body, a
is the input strength for application of motor actions
m(t) and x(t + 1) is the resulting next time step
sensory input for the learning system. In figure 3,
the vector field is depicted with the colored areas
denoting the basins which each lead to a stable fixed
point. The system is slightly unsymmetrical and the
second fixed point is located close to the separatrix.

Figure 3: A neural vector field as a simplified and re-
stricted body. Due to the application of the hyperbolic
tangent, the range of sensory values is bounded to (−1, 1)
in each dimension. Dots denote stable fixed points.

Before we continue, figure 4 on the next page gives
a brief overview of the entire algorithm. Concluding,
the table lists the set of parameters used for the test
case given above.



Figure 4: Overview of the entire learning architecture.

Nmax M K ε0 εR εθ κ
50 30 5 0.1 0.01 0.01 0.5

Table 1: List of parameters used for the experiments.

6. Results

Starting with only two experts, the learning al-
gorithm continuously acquires more units, rapidly
growing into a multi-expert network. Hence, the
discretization of the sensory state space gets more
and more fine-grained. Figure 5 shows the configu-
ration of the network in early and later stages. Note
the way locations of experts match with the vector
field of figure 3. Due to the reduced motor strength,
some regions of the state space cannot be visited by
the individual. If the predefined maximal amount
of experts Nmax is exhausted, the network will be
pruned, and therefore remains under continuous de-
velopment.
Figure 6 shows the area of the sensor space fre-

quently used by the individual. It also offers the
mean motor action performed, with respect to the
individual’s sensory state space. Meanwhile, the
initially random action selection develops a certain
structure by means of a non-uniform distribution.
In comparison to purely random activity the intrin-
sically motivated individual rapidly develops prefer-
ences in action selection.

Figure 7 shows the frequencies of possible actions
with respect to the selection method. The more so-
phisticated Boltzmann method reveals the highest
variance in action selection. Due to the unsymmet-
rical nature of the body this result matches with the
expectations.

Observing the behavior of the individual exhibits
a specific structure. As depicted in figure 8, there are
phases of apparently random behavior alternating
with phases of nearly deterministic behavior. Tem-
porarily emerging structure in behavior can be rec-
ognized as sequences of successive states. Such a se-

Figure 5: The configuration of the multi-expert network
at an early a), a later b), and the final stage. Every node
represents a single expert unit while edges constitute the
neighbourhood relation and illustrates the expert’s im-
portance.

Figure 6: Area of frequently used sensor space (to the
left), mean motor action exerted with respect to position
in sensor space (to the right).

quence grow out of the interplay of multiple expert
units, each making its own short-term action selec-
tion. These sequences appear in different sizes and
shapes, and apparently stabilize for a short period of
time before they eventually disappear.

These behaviors partially reappear several times.
Their shape is greatly influenced by the dynamics
of the body. Varying the form of the vector field,
considerably changes the shape of the sequences so
that every body shape reveals its distinctive set of
sequences. This implies that the algorithm makes
extensive use of the underlying body dynamics.

Figure 7: Histograms of selected actions during long-term
runs of 2 hours length. In comparison: a) random selec-
tion, b) ε-greedy, and c) the Boltzmann method.



Figure 8: Snapshots of successive stages of the artificial
system, each showing 2000 past time steps of the trajec-
tory x(t).

7. Summary and Outlook
We proposed an algorithm based on the idea of in-
trinsic motivation for self-exploration of an artificial
individual. The algorithm implements the learning-
progress as reward hypothesis and has been applied
to a simple abstract body. Emerging structure in be-
havior can be observed with respect to the shape of
the body and the learning architecture.
Currently, we are investigating the application

of the presented learning algorithm on a small
sized robot, which is suitable for unsupervised self-
exploration experiments due to its rich propriocep-
tive sensors and its capability for avoiding self-harm.
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